Worksheet for 2020-09-09

Problem 1. The two space curves $\mathbf{r}_{1}(t)=\left\langle 2 t, 2-2 t, 3+t^{2}\right\rangle$ and $\mathbf{r}_{2}(t)=\left\langle 6-2 t, 2 t-4, t^{2}\right\rangle$ intersect. Find the coordinates of the point of intersection, and find the angle formed by the two curves at that point of intersection.

To find intersection:

$$
\left\{\begin{aligned}
2 t & =6-2 s \\
2-2 t & =2 s-4
\end{aligned}\right\} \text { this is redundant actually }
$$

$t=3-s$, substitute into Brdeq: $\quad 3+9-6 s+x^{2}=x^{2}$ $s=2 \quad$ and $\quad t=1$.

Indeed: $\quad \vec{r}_{1}(1)=\langle 2,0,4\rangle=\vec{r}_{2}(2)$.

$$
\begin{aligned}
\text { Now use } \cos \theta=\frac{\vec{r}_{1}^{\prime}(1) \cdot \vec{r}_{2}^{\prime}(2)}{\left|\vec{r}_{1}^{\prime}(1)\right|\left|\vec{r}_{2}^{\prime}(2)\right|} \\
\vec{r}_{1}^{\prime}(1)=\langle 2,-2,2\rangle \\
\vec{r}_{2}^{\prime}(2)=\langle-2,2,4\rangle \\
\cos \theta=0 \text { so } \theta=\pi / 2 .
\end{aligned}
$$

(Note: if we found an obtuse angle, would be better to give $\pi-\theta$ is answer?

Problem 2. Find a function $f(x, y)$ such that, for every nonnegative number k, the level set $f(x, y)=k$ is a circle of radius $2 k$ centered at the point $(2,3)$.
What kind of shape is the surface $z=f(x, y)$?
circle of radius $2 k$ centered at 2,31 :

$$
\begin{aligned}
& \frac{(x-2)^{2}}{4 k^{2}}+\frac{(y-3)^{2}}{4 k^{2}}=1 \\
& \frac{1}{2} \sqrt{(x-2)^{2}+(y-3)^{2}}=k \\
& \text { So } f(x, y)=\frac{1}{2} \sqrt{(x-2)^{2}+(y-3)^{2}} .
\end{aligned}
$$

This is (the top half of) a cone.

